
Testing Telecoms Software with Quviq QuickCheck

Thomas Arts
IT University of Göteborg, Gothenburg,

Sweden
and Quviq AB

thomas.arts@ituniv.se

John Hughes
Chalmers University, Gothenburg,

Sweden
and Quviq AB

rjmh@cs.chalmers.se

Joakim Johansson
Ulf Wiger

Ericsson AB,Älvsjö, Sweden
joakim.l.johansson@ericsson.com

ulf.wiger@ericsson.com

Abstract
We present a case study in which a novel testing tool, Quviq
QuickCheck, is used to test an industrial implementation of the
Megaco protocol. We considered positive and negative testing and
we used our developed specification to test an old version in order
to estimate how useful QuickCheck could potentially be when used
early in development.

The results of the case study indicate that, by using Quviq
QuickCheck, we would have been able to detect faults early in the
development. We detected faults that had not been detected by other
testing techniques. We found unclarities in the specifications and
potential faults when the software is used in a different setting. The
results are considered promising enough to Ericsson that they are
investing in an even larger case study, this time from the beginning
of the development of a new product.

Categories and Subject DescriptorsD.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools; D.2.4 [Software En-
gineering]: Software/Program Verification—Formal methods

General Terms Verification

Keywords Test Automation, Property Based Testing

1. Introduction
This paper describes a case study intended to evaluate a novel
software testing tool, Quviq QuickCheck, in the development of
telecommunications software. Quviq QuickCheck is a tool that
tests running code against formal specifications, using controllable
random test case generation combined with automated test case
simplification to assist error diagnosis. Our case study considered
the Media proxy under development at Ericsson, the world’s lead-
ing provider of telecommunication equipment, among which mo-
bile telecommunications systems and internet multimedia subsys-
tems. We wanted to know whether QuickCheck was applicable at
all to real telecoms software, which typically implements large and
complex protocols, and must live up to very high quality standards.
Would QuickCheck enable us to find bugs faster than conventional
testing? Would it find subtile bugs, or just “obvious” ones? Would

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’06 September 16, 2006, Portland, Oregon, USA.
Copyright c© 2006 ACM 1-59593-490-1/06/0009. . . $5.00.

it potentially reduce testing time? Would it find obscure bugs, and
help to improve final product quality? Our study is small and qual-
itative, but it suggests that the answer to all of these questions is a
resounding “Yes”.

The rest of the paper is structured as follows. In section 2 we
give an introduction to Quviq QuickCheck, and in section 3 we
explain our case study, giving some background on the software
testing methods already used at Ericsson. In section 4 we explain
our approach in detail, with samples of the testing code and a
description of the extensions we made in parallel to QuickCheck,
to better support this kind of testing. In 5 we present the results we
obtained, and in 8 we draw conclusions.

2. Quviq QuickCheck
Quviq QuickCheck is a property-based testing tool, developed from
Claessen and Hughes’ earlier QuickCheck tool for Haskell [3]
and a re-design for Erlang [2]. Apart from adaption to an Erlang
setting, Quviq QuickCheck includes a number of extensions, of
which the most significant is an ability to simplify failing test cases
automatically. Quviq QuickCheck is a product of Quviq AB.

A user of QuickCheck writes properties that are expected to
hold, as Erlang source code making use of the QuickCheck API.
For example, one property of the standard list reversal function is

prop_reverse () ->
?FORALL({Xs,Ys},

{list(int()),list(int())},
lists:reverse(Xs++Ys)
==
lists:reverse(Ys) ++ lists:reverse(Xs)).

This can be read as the logical statement

∀(Xs, Ys) ∈ list(int())× list(int()).
lists:reverse(Xs++Ys) =
lists:reverse(Ys) ++ lists:reverse(Xs)

Here ?FORALL is an Erlang macro, which takes apattern as its
first parameter:?FORALL(X,S,P) binds patternX to a value in
the setS, within the propertyP. By writing properties in this
style, the QuickCheck user can build up a (usually partial)formal
specificationof the code under test, which is checked against the
implementation by QuickCheck.

Checking the property runs 100 random test cases drawn from
the given sets, and reports success if all tests pass. If any test fails,
the failing test case is printed. For example, if the user mistakenly
formulated the property above as

lists:reverse(Xs++Ys)
==
lists:reverse(Xs) ++ lists:reverse(Ys)

(in whichXs andYs are swapped in the last line), then QuickCheck
might report

Failed! After 8 tests.
{[-2],[2]}
where the value printed is the failing test case that was bound to the
pattern{Xs,Ys} by ?FORALL.

Quviq QuickCheck enables the user to run many tests with little
effort, and provides adirect payofffor formulating formal speci-
fications, thus encouraging developers to do so. In comparison to
automated regression testing, which runs thesametests repeatedly,
random testing of the sort that QuickCheck performs has the poten-
tial to find many more defects. A consultant experience shows that
85% of software defects are found thefirst time a test is run [5]—
regression testing will mainly check that the same mistake is not
made twice, while QuickCheck also searches for new innovative
ways of which a bug may have been introduced.

In fact, QuickCheck prints more information than we saw
above—once found, the counterexample is simplified as far as pos-
sible. In this case, this leads to the output

Failed! After 8 tests.
[-2],[2]
Shrinking....(4 times)
[0],[1]

The effect of “shrinking” in this simple example is just to reduce
the absolute values of the numbers in the test case—as a result,
we can at least see that the failure of the test does not depend on
the particular values2 and-2. In general, simplifying test cases
can lead to a dramatic reduction in their size and complexity—
see Hildebrant and Zeller for some very convincing examples [9].
Simplifying failing test cases is usually the first stage of diagnosing
a fault, and is often very time consuming. Automating this process
can lead to substantial savings.

Knowing that the final failing test case isminimalprovides still
more information. For example, we can see that neitherXs nor Ys
can be the empty list in a failing test—otherwise, shrinking would
have discarded one of the list elements altogether. Likewise, the
elements of the two lists cannot be equal—otherwise, shrinking
would have reduced the element ofYs to zero also. QuickCheck
can also display the failed shrinking attempts—that is, successful
tests which are similar to, but smaller than, the minimal failing test,
thus helping the user to diagnose the fault more quickly.

In real applications, the test data are rarely just lists of integers.
In the property above,list(int()) is atest data generator, which
captures both a set of values (lists of integers) and a probability
distribution over them at the same time. When writing properties
of real programs, test data of complex types is needed, and suitable
generators have to be defined by the user. QuickCheck provides a
rich set of macros and library functions for doing so. We will see
some examples of their use in section 4 below.

3. The Media Proxy
The component we chose for our case study was the H.248 protocol
interface to Ericsson’s Media Proxy. The Media Proxy is the data-
plane part of a Session Border Gateway, which serves as a media
firewall in an IP-telephony network. At this time, the Media Proxy
had been subjected to Function Test, and was undergoing System
Test and approaching product release. As such, it was stable and
well documented. The H.248 interface is central to the family of
products to which the Media Proxy belongs, and is, due to its
inherent complexity, very difficult to test using traditional methods.
Specifically for the Media Proxy, a reasonably small subset of
H.248 was supported, so a case study could be carried out with
limited resources.

Pre-release testing usually takes 3-4 months at Ericsson, during
which all the effort of the development team is devoted to find-
ing and fixing errors. The quality standards that telecommunica-
tion products must meet are very high, and theÄlvsjö team follow
a disciplined approach to testing, among other things using the Er-
lang/OTP test server to run thousands of automated tests regularly.
The team has a strong track record for quality, meeting and exceed-
ing the five nines reliability criteria [8].

The media proxy was thus fairly well tested when we began, but
it allowed us to evaluate QuickCheck’s potential for finding subtile
bugs late in the development process. This is interesting, even if
larger benefits would be expected by formulating properties, and
using QuickCheck, at a much earlier stage. That the media proxy is
itself partially implemented in Erlang is not really important—we
used a black-box approach, testing the proxy by sending it protocol
messages and inspecting the replies, so it could equally well have
been implemented in any other programming language.

The media proxy has been developed by an iterative process
with an internal release every two weeks. These releases are stored
and can be reconstructed, thus allowing us to move back in time.
In an experiment, we used our QuickCheck properties to test an
old release in order to obtain some insight in how many faults
we potentially would have been able to detect if we were to use
QuickCheck much earlier in the development.

The media proxy is part of a standardised approach to support-
ing multimedia calls, defined by the International Telecommunica-
tion Union (ITU). In this approach, incoming and outgoing media
streams (sound, video, etc.) are connected to each other by ame-
dia gateway. The connections are established or broken by ame-
dia gateway controller, a separate physical unit which communi-
cates with the media gateway using a protocol known as H.248, or
Megaco (Media GatewayController). The media proxy is a sim-
ple case which is just intended to carry multimedia calls across a
firewall. It behaves as a simplified media gateway, and thus accepts
and carried out commands from a media gateway controller.

The current version of the Megaco protocol is specified by an
ITU recommendation, a document of 212 pages [7]. It defines a
number of commands which a media gateway controller can send
to a media gateway, how the commands should be interpreted by
the gateway, and the responses that may be returned. The proto-
col is largely stateless—the controller can send any command to
the gateway at any time. In a few cases, the gateway may send a
message to the controller which isnot just a response to a previ-
ous command, but we ignored these in our case study. The code
contains approximately 150,000 lines of Erlang code and ten times
as much C code. We tested merely the control software, which is
implemented in Erlang.

The most important elements of the gateway state arecon-
textsandterminations—or, in plain English, calls and subscribers.
Each termination (subscriber) is associated with a number of media
streams, which may be in a variety of states (inactive, sending, re-
ceiving, etc). Calls are initiated by creating a context and placing a
termination in it.Addcommands are used to insert terminations into
contexts; all the terminations in the same context are participants in
the same call, and (by default) see and hear each other—streams
with the same stream identifier in each termination in a context are
(by default) connected to each other.Modify commands are used
to change the properties of streams in terminations—for example,
activating them once all the participants in a call have been added.
Subtractcommands are used to remove terminations from contexts;
when the last subscriber is removed from a call, the call ends. Nine
other commands are defined in the standard, but these are the most
important, and are the only ones we included in our testing.

The Megaco standard is very general, and permits any number
of terminations in the same context, with any number of streams in

each one, connected to each other in any topology. The media proxy
is much simpler than this: it is restricted to at mosttwo terminations
per context, with at mostfivestreams, with the default all-hear-all
connections between them. There are many other simplifications
and restrictions on the commands that can be sent, and the replies
that may be received. This is acceptable, because (the first release
of) Ericsson’s media proxy is only intended to be used together
with an Ericsson media gateway controller, and these two products
can be designed to work together. It is important, though, to specify
clearly what subset of the standard protocol the Ericsson products
will use. This is done in an internal Ericsson document, theInter-
work Description(IWD), a further 183 pages. This document, and
the ITU standard itself, were our main sources of information when
developing QuickCheck properties and generators.

4. Our Approach
We used a black-box testing approach for the Media proxy in which
Quviq QuickCheck sends messages to the proxy and receives the
replies. The replies are analyzed and cheched against expectations.
In addition, crashes of the Media proxy can be observed, so that
QuickCheck is aware of test cases resulting in a system failure.

4.1 Generating H.248 Messages

Our first task was to develop QuickCheck generators for H.248
messages. H.248 permits messages to be sent either in a text form,
or in a binary form, and the standard contains a grammar for each.
The text form of messages is specified by an ABNF grammar [4],
while the binary form is specified in ASN.1 [6]. However, the
Media Proxy represents messages as Erlang records, and we had
a library available to convert these to and from the text and binary
forms. We could thus generate Erlang data-structures, and use this
library to encode them as text or binary data.

We initially tried generating random messages according to the
ABNF syntax, but these were invariably rejected by the Media
Proxy because they did not fulfill the conditions stated in the IWD.
Thus we wrote generators which essentially were an implementa-
tion of these conditions. For example, messages may contain ame-
dia descriptor, which the standard specifies in ASN.1 as follows:

MediaDescriptor ::= SEQUENCE
{ termStateDescr TerminationStateDescriptor OPTIONAL,

streams CHOICE
{ oneStream StreamParms,

multiStream SEQUENCE OF StreamDescriptor
} OPTIONAL,
...

}
The IWD specifies that the termination state descriptor is not used,
but that the streams must be present, and that there may be more
than one of them. This is represented by the following QuickCheck
generator:

mediadescriptor(Streams) when Streams=/=[]->
{mediaDescriptor,
#’MediaDescriptor’{

streams =
case Streams of

[{Id,Mode}] ->
oneof([{oneStream,streamParms(Mode)},

{multiStream,[stream(Id,Mode)]}]);
_ -> {multiStream,

[stream(I,M)|| {I,M} <- Streams]}
end}}.

In this code, the teletype font is just constructing Erlang data
structures to represent messages—just what would appear in a

traditional test case. The italic font encodes the logic from the
IWD—that there must be at least one stream, and that the possible
representations differ depending on whether there is one stream,
or several. The bold font is the only QuickCheck operation that
appears here, expressing the fact that when there is only one stream,
it may be represented either using theoneStream tag, or using the
multiStream tag with a single stream. When a media descriptor
containing one stream is actually generated, QuickCheck makes a
random choice between these two alternatives. The functiononeof
returns a generator, not a stream descriptor, but QuickCheck allows
any data-structure containing a generator to be used as a generator
itself, which permits generators for complex types such as this to
be written with a very lightweight syntax—QuickCheck functions
need be introduced only where a random choice must be made.

To take another example, each stream in a media descriptor is
described by a collection ofstream parameters, specified in ASN.1
as follows:

StreamParms ::= SEQUENCE
{ localControlDescriptor

LocalControlDescriptor OPTIONAL,
localDescriptor

LocalRemoteDescriptor OPTIONAL,
remoteDescriptor

LocalRemoteDescriptor OPTIONAL,
...,
statisticsDescriptor

StatisticsDescriptor OPTIONAL
}

The IWD specifies in addition, that “LocalControl will be included
in all cases except when no media (m-line) is defined in the re-
mote SDP”, the remote SDP being the remote descriptor appearing
among the stream parameters above. Thus there is a dependency be-
tween the appearance of the local control descriptor, and the form
of the remote descriptor. There are essentially two cases for stream
parameters, with and without an m-line in the remote descriptor,
and we have to ensure that valid stream parameters are generated
in each case. The QuickCheck generator which does so appears as
follows:

streamParms(Mode) ->
?LET(RemoteMediaDefined, probably(),

case RemoteMediaDefined of
true ->
#’StreamParms’{
localControlDescriptor =

localControl(Mode),
localDescriptor =

localDescriptor(RemoteMediaDefined),
remoteDescriptor =

remoteDescriptor(RemoteMediaDefined)};
false -> ...

end).

Here?LET is a QuickCheck construction which binds a variable,
RemoteMediaDefined, to the value generated byprobably()—a
random boolean which is more often true than false. (It was con-
sidered that cases where an m-lineis defined are more interesting
to test). The final result is then generated by the third argument of
?LET, in whichRemoteMediaDefined is used to ensure that a lo-
cal control descriptor is indeed generated if a remote media line
is to be included, and (in the call toremoteDescriptor) that a
remote media line is indeed included if we decided that it should
be.

As these examples illustrate, it is quite straightforward to write
generators that ensure that generated data meet the requirements
stated in the IWD.

However, it is easy to make a mistake when writing these gener-
ators, and generate messages with the wrong structure. These mis-
takes could in principle be discovered by a static type-checker, but
since Erlang lacks such a thing, we had to discover them by testing.
We made use of the existing libraries for encoding Megaco mes-
sages as text, and wrote a QuickCheck property requiring that all
messages generated by our generators could be encoded as text, and
then decoded again to produce the same result. We found numerous
mistakes in our generators by this method.

4.2 Testing Message Sequences

Most of the testing we carried out consisted of sending message
sequences to the media proxy, and inspecting the replies they gen-
erated. Attention was focused in the first place onpositive testing,
that is, testing which aims to establish that the system under test
responds as expected tovalid inputs. Thus we wanted to generate
message sequences that would conform to the proxy’s expectations,
rather than unexpected sequences that should trigger an error reply.
In addition, we also looked at somenegative testing, where in a se-
quence with valid inputs, aninvalid input is generated. The proxy
is in those cases expected to respond with an error reply.

4.2.1 Testing valid sequences

We generated sequences of Add, Modify, and Subtract commands,
and checked that all the commands in each sequence could be exe-
cuted by the proxy, with a correct “success” result being returned.
The main constraint that we had to satisfy to ensure valid command
sequences was that no context should ever contain more than two
terminations—so sending three Adds in a row to the same context
was not allowed. Moreover, Modify and Subtract commands must
refer to existing terminations—which requires keeping track of the
terminations which have been generated, of their identifiers (which
are returned by the proxy), and of the subtractions which have al-
ready been performed.

We decided therefore to generate test cases consisting of a se-
quence of commands and assertions, each being a call to a suitable
Erlang function. Since we expect this kind of testing to be common,
we built a generic command-sequence testing module on top of the
QuickCheck core, and constructed the media proxy tests in terms
of the new module. In order to keep to valid command sequences,
we constructed an abstract model of the proxy state, and used it to
generate and recognise sequences fulfilling the conditions above.
These two steps are discussed in the following two subsections.

4.2.2 A Module for Testing Command Sequences

Although it is easy to define an Erlang function which makes a se-
quence of calls, we wanted to represent such test casessymbolically—
so that they could be displayed for the user, automatically sim-
plified, and analysed to filter out invalid sequences. We there-
fore generated test cases as Erlang data-structures, and defined
an interpreter responsible for actual test execution. While all of
this would be quite possible using the core QuickCheck func-
tionality, it is not exactly convenient, which is why we built an
additional moduleeqc_commands to make this kind of testing
easy. Although we think ofeqc_commands as extending the func-
tionality of QuickCheck, in fact it uses the same interface to
the QuickCheck core as any other testing code. So although it
was convenient for Quviq to supply it in this case, this was not
necessary—eqc_commands could be written by any sufficiently
skilled QuickCheck user.

To illustrate how we useeqc_commands, consider a simple
example using the commanduse(N) to use a resource with number

N, and the assertionavailable(N) which checks thatN is not in
use. This models a situation in whichuse commands have side-
effects that can invalidate future assertions; this is what we wish to
discover by testing.

We define a property that states that assertions always succeed,
no matter which commands have previously been executed (of
course, this property will fail).

prop_commands() ->
?FORALL(Cmds,make_commands(commands()),

begin put(resources,[]),
case run_commands(Cmds) of
{ok,_} -> true;
{error,_,_} -> false

end end).

Here theput initialises the list of resources in use, whilerun_commands
runs a list of commands, returningok if no exceptions are raised
and all assertions succeed. The commands themselves are gener-
ated bycommands():

commands() -> ?LAZY(
frequency(

[{1,[]},
{5,?SET(OK,?MODULE,use,[choose(1,5)],

commands())},
{5,?ASSERT(?MODULE,available,[choose(1,5)],

commands())}])).

The frequency function chooses between weighted alternatives,
in this cases generating command lists with an average length of
11. ?SET generates a command to calluse, with an argument
between one and five, binding the result toOK. ?ASSERT generates
an assertion callingavailable, with an argument between one
and five. In both cases, the last argument of the macro generates
the rest of the list of commands. (The enclosing?LAZY introduces
lazy evaluationof the generator—without this,commands() would
recurse infinitely).

When we tested this property, we obtained the following failing
test case:

Failed! After 1 tests.
[{assert,test,available,[2]},
{assert,test,available,[1]},
{assert,test,available,[4]},
{set,1,test,use,[2]},
{assert,test,available,[5]},
{assert,test,available,[2]},
{set,2,test,use,[2]},
{set,3,test,use,[1]},
{assert,test,available,[2]},
{assert,test,available,[5]}]

This is the value ofCmds in the property—as we can see,?SET and
?ASSERT generate Erlang terms representing the function calls to
be made during a test. The numbers occurring in{set,. . .} terms
are indiceswhich can be used to refer to the value returned by a
command in later commands or assertions.

This failing test case does provoke an error, but is not partic-
ularly perspicuous. Fortunately, QuickCheck goes on to simplify
the failing test as follows, using simplification strategies built into
eqc_commands:

Shrinking........(8 times)
[{set,1,test,use,[2]},{assert,test,available,[2]}]

Simplification discards commands and assertions which do not
contribute to the error, leaving precisely one assertion—the one
that failed—and the one command which caused the assertion

failure. Such simplified test cases are an excellent starting point
for debugging.

In this simple example, no use is made of the results returned by
use, but in reality the result of one call is often needed to construct
the arguments of later ones. This is why?SET binds the result to a
variable (OK in the example above). Yet this result is not available
while the test case is beinggenerated—only when it is run—so
what isOK bound to at generation time, and how can it later be
used?

Our solution is to bind such variables toan expressionthat
can be evaluated during test execution to yield the result of
the call. These expressions take the form of Erlang data struc-
tures, and in the example above would be{var,1}, {var,2}
and {var,3}. When such expressions appear in generated test
cases, our interpreter replaces them by the value returned by the
corresponding command, before each command or assertion is
executed. Our interpreter also recognises structures of the form
{call,Module,Function,Args} and interprets them as function
calls. This gives us a simple symbolic representation for tests that
process and use the results from earlier commands in later ones—
something that is essential for testing the media proxy.

4.2.3 Tracking the Proxy State

In order to restrict testing tovalid command sequences, we needed
to predict the proxy state as the sequence is executed. We intro-
duced anabstract modelfor this purpose. We needed to keep track
of all the terminationscreated by the command sequence, of the
contextthat each belonged to, and of thestreamsassociated with
each termination, together with their modes. We modelled the state
by an Erlang record

-record(state, termination=[]).

wheretermination is a list of pairs oftermination identifiers
and abstracttermination states. Termination states were also rep-
resented by a record:

-record(termstate, context, streams=[]).

wherecontext is thecontext identifierof the context in which the
termination resides, andstreams is a list of stream identifiers
(small integers) andmodes(inactive, sendRecv, sendOnly,
recvOnly). Since termination and context identifiers are allocated
during test execution by the media proxy itself, then theabstract
state used during test generation contains onlyexpressions that will
evaluateto the correct identifiers during test execution, as described
above.

Given such an abstract proxy state, we can decide whether or
not each command in a test case is valid. For example, anAdd
command is valid if the context it is adding to is either newly cre-
ated (and so originally empty), or contains only a single termina-
tion. Addcommands appear in our test cases as a call to the func-
tion send_add, with parameters the context being added to, the
streams of the termination being added, and the request message
which should actually be sent. The validity ofAdd commands is
checked by a clause in the functionvalid_cmd, as follows:

valid_cmd(S,{set,V,_,send_add,[Cxt,Streams,Req]}) ->
lists:member(Cxt,[?megaco_choose_context_id |

singletoncontexts(S)]);

Here?megaco_choose_context_id indicates to the proxy that
it should allocate a new context, whilesingletoncontexts(S)
extracts the list of contexts containing only a single termination
from the abstract proxy state—so anAddcommand is valid under
precisely the conditions stated above. The preconditions forModify
andSubtractcommands are checked by other clauses.

To decide whether an entiresequenceof commands is valid, it
is also necessary to track changes to the abstract state caused by
each command. We defined a functionstate_after(S,Cmd) to
compute the new abstract state after execution of commandCmd in
stateS. In the case of anAddcommand, a new termination is added
to the abstract state, with a termination identifier extracted from the
result of theAdd, and a context identifier extracted from the result if
the context was newly created, and taken from the command itself
if an existing context was used:

state_after(
S,
{set,Reply,_,send_add,[Cxt,Streams,Req]}) ->
Context =

if Cxt==?megaco_choose_context_id ->
{call,
?MODULE,get_amms_reply_context,[Reply]};

true -> Cxt
end,

#state{
termination =

[{{call,
?MODULE,get_amms_reply_termid,[Reply]},
#termstate{context=Context,

streams=Streams}}
| S#state.termination]};

In this code,Context is defined to be anexpressionwhich will
evaluate to the context of the new termination at test execution time,
and similarly the termination identifier is an expression which will
apply get_amms_reply_termid to extract the real termination
identifier at test execution time. The twoget_amms_. . . functions
are defined in the module containing this specification, and just
select the right field from the reply. We are careful to reuse the
existing expression for a context which already exists, so that we
can easily tell at test generation time whether or not two context
identifiers will denote the same context when the test is executed.
Similar clauses update the abstract state after aModifyor Subtract.

Using valid_cmd andstate_after, it is simple to define a
functionvalid_commands which tests whether an entire sequence
of commands will be valid, when executed in the initial abstract
state.

Of course, it would be very costly to generate arbitrary se-
quences of commands, and then keep only those which happen
to be valid. We therefore wrote a generator tailor-made to gener-
ate valid command sequences. We tracked the abstract state during
generation also, definingpossible_cmd(S) to generate a com-
mand which is valid in stateS, together with an assertion check-
ing that the command succeeded. It is always possible to gen-
erate anAdd command, whileModify and Subtractcommands
can be generated only if there is a termination available to op-
erate on. We generated commands which, by construction, sat-
isfy valid_cmd, for example choosing the context that we add
a termination to to be either?megaco_choose_context_id or
an element ofsingletoncontexts(S), so that the condition in
valid_cmd is trivially satisfied. By usingstate_after to com-
pute the abstract state after the generated command, we can en-
sure that the commands that follow are also valid according to
valid_commands. Although there is a certain amount of repeti-
tion here—we express the same conditions both via a predicate and
a generator—in fact, most of the code is common.

The reason we needboth a generator and a predicate, is that
even if the command sequence we initially generate is valid, once
we start shrinking the sequence by dropping commands, there is no
guarantee that it will remain valid. For example, it is valid to add
two terminations to a context, subtract one, and then add a third,

because at no time are there more than two terminations in the
context. Yet if this sequence were shrunk by discarding the subtract,
then it would become invalid. We need not only a generator that
produces valid sequences initially, but a predicate that we can use
to recognise valid sequences during shrinking.

The property we finally used for testing was as follows:

prop_commands_succeed() ->
?FORALL(

Cmds,
make_commands(possible_cmds(initialstate())),
?IMPLIES(valid_commands(Cmds),

case run_commands(Cmds) of
{ok,_} -> true;
{error,Results,Reason} -> false

end)).

The preconditionvalid_commands(Cmds) ensures that any in-
valid sequences are discarded during shrinking.

4.2.4 Testing invalid sequences

The Interwork Description describes which sequences of messages
are valid, and as long as all systems communicating with each
other are based on the same IWD, then invalid messages need not
be considered. For this reason, testing is mainly focused on valid
message sequences.

Negative testing, that is sending a sequence containing an in-
valid message, is of interest for estimating compatibility with the
full H.248 protocol. Since the IWD restricts the H.248 protocol,
there are valid H.248 message sequences that are invalid in the con-
text of the proxy. In the future, the media proxy may perhaps be
connected to controllers from other suppliers, which may well gen-
erate such invalid message sequences. Such future releases of the
proxy should at least reply with an error message when receiving
a message that is valid according to the H.248 protocol, but invalid
according to the IWD. Thus we included some negative testing in
our case study.

There are numerous examples of invalid messages, and we only
concentrated on two obvious cases: adding three terminations to
a context, and using an arbitrary termination identifier in an Add
request. In both cases the expected behaviour of the proxy is to
reply with an error message.

Generating such invalid message sequences works in exactly the
same way as generating valid messages. An Add request with an
arbitrary termination identifier can only be sent in the case when
a context already exists, and so at least one Add request has to
precede this invalid request. Similarly, adding a third termination
to a context must be preceded by two other Add requests. We
use the abstract state to determine whether we can generate an
invalid message. The result of the message is compared with the
expected error reply and a fault is detected when that comparison
fails. Note that invalid messages may be generated at any point in
a message sequence, and indeed, a single sequence may contain
multiple invalid messages.

Although rather straightforward, there is one issue one has to
pay special attention to here. In the test case one should be able to
distinguish between sending a valid and an invalid message. This
is necessary in order to formulate thevalid_commands(Cmds)
precondition and to update the state correctly. For example, recall
from Sect. 4.2.3 that we defined sending an Add request to be valid
if the context either was a new context or one with one termination
added.

valid_cmd(S,{set,V,_,send_add,[Cxt,Streams,Req]}) ->
lists:member(Cxt,[?megaco_choose_context_id |

singletoncontexts(S)]);

If we just use the functionsend_add to send the third termina-
tion to an existing context, the precondition will rule out this test
case. The solution is, of course, to create a new function, e.g.,
send_third_add and allow that only when the context already
contains two terminations (remember that we may drop an Add re-
quest when shrinking!). The abstract state that we maintain while
creating a test case is updated according to the expected result
of adding a third termination—namely that since we expect the
proxy to reply with an error message, the abstract state remains
unchanged.

5. Results
As we developed generators and properties, we ran tests as often
as possible, and of course encountered many errors in our own
code. Often it was quite difficult to establish whether a failure was
due to a misunderstanding on our part, or a genuine error in the
system under test. However, after around six days of developing
our QuickCheck specification, we had found five errors in the proxy
itself. These are explained in the first subsection below.

We observed that the proxy was already working rather well
when we began our experiment. In order to evaluate QuickCheck
as a development tool, we also tested a version of the proxy from
several months earlier, using the same QuickCheck properties. The
results of this experiment are presented in the second subsection.

The faults we detected have all been reported to the develop-
ment team. The seriousness of each fault was discussed and counter
measures were taken.

5.1 Faults Found

The first fault we found was not really in the proxy, but in the
Megaco encoding and decoding itself. Looking back at the ASN.1
specification ofStreamParms in section 4.1, we see thatall of its
components are optional—and this is also true according to the
IWD. This might lead one to conclude that it is valid toomit all
the fields from aStreamParms—but when QuickCheck generated
such a message, the encode-decode property that we used to test
our message generators failed. On closer inspection, we found
that while the ASN.1 grammar in the ITU standard allows for a
StreamParms with zero fields, the ABNF grammar in the same
standard insists that at least one must be present—it doesn’t matter
which one, but at least one must be there. It seems, then, that the
standard itself is inconsistent on this point, which illustrates the
dangers of constructing two descriptions of the same thing, with
no automated check that they agree. (It is possible, but unlikely,
that theintention is to permit streams with no parameters when
the binary interface, specified in ASN.1, is used, but not when
the text interface, specified in ABNF, is used). In any case, the
encoder and decoder we were using encoded messages as text, and
thus should have followed the ABNF grammar in the standard and
rejected streams with no fields—but the encoderacceptedthem,
while the decoder rejected them. However one chooses to interpret
the standard, the choice should be made consistently, and so this
reveals a fault in the software under test.

The other faults were provoked by minimal command se-
quences, generated as described above.

• If a single termination is added to a context, and then that
termination is modified, then there is a crash inside the proxy.
Modification is intended to be used to activate the streams in a
context once both participating terminations have been added,
and the designers had simply assumed that both terminations
would be available when a modify was attempted.

• Adding one termination to a new context, and then subtracting
it again, caused a crash in the proxy—on the first day we tried
it. When we tried to duplicate the failure on the following day,

it no longer occurred. It turned out that the fault had just been
fixed by the developers, via a patch which was not installed on
the machine which we first used.

• Adding two terminations to a context, and then trying to modify
one of them, results in a crash in the proxyif the terminations
do not have the same number of streams. For example, if one
termination carries audio and video streams, and the other car-
ries only audio, then attempting to activate the streams leads
to a crash. This was really the same underlying problem as the
first fault above: the designers had assumed that each stream in
a termination being modified has a “partner” in the other termi-
nation, but if the number of streams differs then this is not the
case.

• The last fault we found arises when a termination is added to
a new context; a second termination is added, and then sub-
tracted; a third termination is added and then subtracted; then
a fourth termination is added and subtracted. On this final sub-
tract, there is a crash in the proxy. This failing case was partic-
ularly interesting because it illustrated the power of shrinking:
the original test consisted of over 160 commands, but shrinking
reduced it to just these seven. It is also a test that a human tester
would hardly be likely to try. The problem was caused by a fail-
ure to clean up data-structures correctly on a subtract, leading
to an incorrect state after the first subtract, but survivable until
the third one.

Once our initial approach was decided, and the basic message
generators written, we found that each fault required around half
a day of work to find. After the second and fourth faults were
found, we also needed to revise our specification to allowMod-
ify commands only when two terminations with equal numbers of
streams were present—thus documenting the bug in the specifica-
tion via a stronger precondition. Without these changes, every run
of QuickCheck found the same bug: especially considering that
failing test cases are simplified, QuickCheck is very likely to re-
port the “most common bug” on every run.

5.2 Testing an Old Version

As a second experiment, we rebuilt an old version of the proxy
and tested it against the same specification, to see how QuickCheck
would perform on a presumably buggier version of the same code.
We rebuilt the second release after serious testing started. (The
first release was merely an attempt to get the infrastructure in
place.) Testing this old release proved to be a little more difficult
than expected, since the interface had changed somewhat between
the old and the new versions, and our QuickCheck specification
had to be revised to conform to the old interface. We also had to
strengthen preconditions after each bug was discovered, to prevent
QuickCheck from reporting thesamebug all the time, as discussed
above. In total, we spent around 6 hours on this experiment.

The version we tested was responsible for two “trouble reports”
in Ericsson’s fault database. In six hours of testing, QuickCheck re-
vealed a total of nine faults. One of these corresponded to a trouble
report—the other trouble report was at the level of the underlying
Session Data Protocol (SDP), which our QuickCheck specification
did not test at all. (We just supplied suitable constants for SDP pa-
rameters in our message generators.) Given only a few days for
developing the QuickCheck properties and generators, the result
indicates that one can boost testing efficiency with QuickCheck.

We have tried to identify whether any of the other eight faults
was caused by an error that was discovered via another, later,
trouble report. This turned out to consume too much time for the
engineers, since the trouble reports may well describe another fault
than the one we observed, nevertheless caused by the same error.

A rough guess was that one or two of the faults detected may be
caused by a later discovered error.

We went through the list of trouble reports and estimated
whether our QuickCheck approach would be able to detect a simi-
lar fault provided that we had had time to extend the specification.
Some faults are typically hardware related or of other kinds that
cannot be detected with our testing approach. Our educated guess
is that we could at least detect half of the faults underlying the
trouble reports. In addition, it is very likely that we would have
identified faults that have not shown as trouble report.

5.3 Invalid sequences

Since negative testing has had low priority in the product develop-
ment, it is not surprising to see that both kinds of invalid sequences
we generate are causing a fault.

Normal termination identifiers look like “ip/12/162/1”, where
the numbers are depending on the hardware. It turns out that the
developers have assumed the first of those four values always to
be “ip” or at least some atom. Therefore, sending the termination
identifier “0/0/0/0” (after shrinking from four arbitrary numbers)
results in a crash of the proxy. Given the resulting failing test, we
can rather quickly conclude that the numbers do not matter for
this failure, since they have shrunk to zero. Therefore, it must be
something with the first value being a number. This demonstrates
how shrinking helps in analysis of the fault. After fixing the error
in the code, we get proper error replies, even on a context like
“12/162”.

An Add request for a third termination to an existing context
is expected to be replied upon with an error message. It turns out,
however, that a reply never is returned. The hardware is not asked
to add the third termination, thus somewhere the software cancels
the request, but a reply is never generated.

6. Discussion
Overall, we are very pleased with the results of this case study.
Although the proxy was already well tested when we started, we
found a number of significant faults, with a modest amount of
work per fault. We did discover, though, thatdomain expertiseis
essential for constructing this kind of QuickCheck specification—
even the apparently complete documentation we were provided
with leaves room for interpretation. This is of course true for all
informal protocol descriptions.

The specification we developed providesprecise documentation
of how we interpreted the IWD. This turned out to be very useful
in fault analysis.

We did encounter debate over whether or not all the faults we
found were “real faults”. The proxy is initially designed to work
together with a specific Media Gateway Controller (MGC), under
development at a different site within Ericsson, and developers
responded that Ericsson’s MGC would never send some of the
message sequences we found. However, later versions of the same
software will be expected to interoperate with MGCs from other
suppliers, and at that stage the faults we found will be significant.

We were actually quite surprised by this objection, because
the purpose of the IWD is just to document the assumptions that
the media proxy may make about the MGC, and the restrictions
we found were needed (specifically onModify commands) are not
stated there. Thus it seems that knowledge about which sequences
will or will not be used has been communicated more informally.
The IWDdoescontain a number of test cases in an appendix, which
sure enough do not do the kinds of things that our generated tests
do. It is common to include such sequences in the requirements
for a system, and of course, they will then be used as a basis for
testing. The risk is that developers of the proxy interpret them as
specifyingwhat sequences must be handled, while the developers of

the controller interpret them asexamplesof sequences that may be
sent. Developing a QuickCheck specification forced us to formalise
and document these extra restrictions, and we believe this is a
valuable contribution, even if informal communication between the
development teams has in this case proved sufficient.

There is a clear request from the users to be able to distinghuish
positive and negative testing. However, the generators for valid
message sequences are a subset of those for invalid sequences,
since one needs to be able to bring the system in a certain state
before certain invalid messages can be sent. A generator for arbi-
trary valid and invalid message may have a distribution of test cases
that either hardly ever generates a negative test or far too often, de-
pending on the likelyhood to bring the system in a state in which
the negative message can be sent. For that reason, one should equip
the generators with an argument used to choose between the kind
of sequences that are generated. With different properties one could
emphasize the different aspects of the system.

Quviq QuickCheck uses Erlang as a testing metalanguage (and
also as the implementation language for QuickCheck), but has its
origins in Claessen and Hughes’ QuickCheck tool for Haskell [3].
Of course, in this case it was convenient to use Erlang, since the
system under test was an Erlang system—but it is still interesting
to compare Haskell and Erlang in this rôle as test metalanguages.
There are substantial differences in the tools themselves, but from
a language point of view, the major differences are Haskell’s static
type system, and lazy evaluation.

QuickCheck depends heavily on lazy evaluation, which is avail-
able “for free” in Haskell, but must be explicitly simulated in Er-
lang. However, we found that in most cases this can be hidden con-
veniently by macros—although not always. It is sometimes neces-
sary to indicate laziness explicitly in Quviq QuickCheck specifica-
tions using the macro?LAZY.

Static typing would certainly have been useful to catch errors
in generators earlier, although we found QuickCheck testing to be
quite a good substitute. The original QuickCheck also allows a
default generator to be associated with each type, so that properties
can be formulated a little more simply when the default generator
is appropriate. However, in this case study,typeinformation is not
enough to determine which generator is appropriate—we need to
know the abstract proxy state too. So in this case, the advantage
of using type information to guide generation would be small.
On the other hand, representing test cases symbolically in Haskell
requires type definitions, potentially many such, whereas in Erlang
we could simply write down the values we wanted. Moreover, the
kind of processing thateqc_commands does of test cases would
require sophisticated generic programming in Haskell, but was
much simpler in Erlang. Interpreting symbolic test cases was eased
by Erlang’s ability to invoke a function given itsnameas an Erlang
atom—Erlang provides some basic reflection via this mechanism.
We conclude that Erlang is rather a suitable host language for this
kind of testing. It’s dubious whether our specifications could have
been expressed as concisely in Haskell, even if the versions of
QuickCheck were otherwise equivalent.

7. Related Work
A predecessor of Quviq QuickCheck has been used in several
case studies, among which one to test a leader election algorithm
[1]. In that case study, random generation of process scheduling
was crucially used. Hardly any generators had to be written for
that case study and shrinking was restricted to lists of scheduling
events. In the case study presented in this paper we have created
generators for complex messages and we have contributed with
a method and library to combine those messages into sequences.
Other significant differences are that we now applied QuickCheck
not only on industrial software, but also with the engineers who

developed the software. Moreover, the application we looked at is
much larger than the leader election algorithm.

There are many other tools and techniques for random test gen-
eration and for model based testing. It is hard to make a quantitative
comparison between all the tools and techniques. We have demon-
strated Quviq QuickCheck to managers at Ericsson’s Methods and
Tools department concerned with selecting the right testing tools
for the company. They turned out to be very surprised by the possi-
bilities QuickCheck offered and claimed: ”Never seen this before”.
The strength of the tool hides in the combination of

• having a rich programming language, Erlang, as test specifi-
cation language, compared to either a restricted or proprietary
language,

• being able to automatically find a minimal counter example,
and

• having full control due to a flexible API.

8. Conclusion
Our case study showed that QuickCheck is applicable to black-
box testing of the synchronous part of real telecommunication
protocols. Even though we only looked at one particular protocol,
we have developed an approach that can be used for many similar
protocols. We detected faults in the Media proxy and could trace
those back to either ambiguities in the Interwork Description or
errors in the code. Some of the errors we found were also found
by the test team, other errors had not been discovered by that team.
The total time it took to find the errors was a fraction of the time
the test team had spent in total. Of course, the test team found more
errors than we have found, also in parts we have not even tested.

QuickCheck also found both subtle and obvious bugs. The sub-
tle errors will never show when the proxy is used as intended.
However, in a different setting, where other vendors connect to the
proxy, the errors may reveal themselves. Therefore, QuickCheck
helped to identify those potential problems.

The results of the case study indicate that by using QuickCheck
early in the development, one would be able to detect faults quickly
with little time investment. Testers would therewith be enabled to
concentrate on different kinds of tests, like performance tests, load
tests, hardware tests, etc. In that way, one can ensure an even higher
product quality.

The results of the case study have been encouraging enough
to Ericsson to invest in Quviq QuickCheck. In recently started new
product development QuickCheck will be used by several engineers
from the start.

References
[1] Thomas Arts, Koen Claessen, John Hughes, and Hans Svensson. Test-

ing implementations of formally verified algorithms. InProceedings
of the fifth conference on Software Engineering Research and Practice
in Sweden, October 20-21 2005.

[2] Thomas Arts and John Hughes. Erlang/quickcheck. InNinth
International Erlang/OTP User Conference, November 2003.

[3] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for
random testing of haskell programs. InICFP, pages 268–279, 2000.

[4] David H. Crocker and Paul Overell. Augmented BNF for syntax
specifications: ABNF. Technical report, Internet proposed standard,
October 2005.

[5] Marc Fewster and Dorothy Graham.Software Test Automation –
Effective use of test execution tools. ACM press/Addison-Wesley,
1999.

[6] International Organization for Standardization. Information processing
systems – Open Systems Interconnection (OSI) – specification of
Abstract Syntax Notation One (ASN.1). Technical report, 1995.

[7] Telecommunication Standardization sector of ITU. ITU-T Rec.
H248.1, gateway control protocol. Technical report, International
Telecommunication Union, September 2005.

[8] U. Wiger, G. Ask, and K. Boortz. World-class product certification
using erlang. In John Hughes, editor,Erlang Workshop, Pittsburgh,
2002. ACM SIGPLAN.

[9] R. Zeller, A. Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28:183–200,
February 2002.

